3

MINIX ON THE ATARI ST

In this chapter we will describe how to boot and install MINIX on the Atari ST.
It is assumed that the reader is already familiar with MINIX in general, and has at
least some knowledge of UNIX.

Booting and installing MINIX on the Atari ST is complicated by a variety of fac-
tors:

» Atari STs are sold with a wide variety of incompatible keyboards

» Some versions can only handle 360K diskettes; others can handle 360K and
720K diskettes

» Some people have winchester disks (hard disks); others do not
* The amount of memory available ranges from 512K to 4M
* The Mega ST differs in some ways from the Atari ST 520 and 1040

Together, these different configurations give problems. Our solution has been to
provide a base version that will require at least LMB of memory and one 720K disk
drive, and make it possible for people with larger configurations to adapt the system
to take advantage of their extra hardware. This chapter explains how that is done.

It is possible to run MINIX on a system with 512K of memory, but that leaves
very little space for applications. In this case the best thing to do is to work without a

25

ram disk at all, and keep the root filesystem on either hard disk or diskette. Running
MINIX on a system with only a 360K disk drive is also possible. However in that
case you must first split each 720K diskettes in the distribution into two 360K ones.
Since you do not have a disk drive capable of dealing with 720K diskettes, you
should do this on a friends system. Sec. 3.6 describes how to split a 720K diskette
into two 360K ones.

3.1. THE MINIX-ST DISTRIBUTION

The MINIX-ST distribution consists of ten diskettes. One of them contains a
binary of the operating system and is used for booting MINIX-ST. Eight others con-
tain MINIX file systems. Only one of them contains a TOS file system. (We use TOS
as the name for any combination of BIOS, XBIOS, GEMDQOS, GEM, AES and
VDI).

All distribution diskettes are double-side, and formatted on both sides. However,
two diskettes contain only 360K of information written on one side of the diskette.
In other words, these two diskettes are written as if they were single sided diskettes.
Here is the list of the diskettes:

Name Sides Size Filesys. Description

00.TOS DS 720K TOS utilities that run as TOS programs
01.BOOT DS 360K special used for booting MINIX

02.ROOT DS 360K MINIX root file system copied to RAM disk
03.USR1 DS 720K MINIX most commonly used commands
04.USR2 DS 720K MINIX commands part 2 of 3

05.USR3 DS 720K MINIX commands part 3 of 3

06.ACK DS 720K MINIX compiler binaries and libraries
07.SRC1 DS 720K MINIX sources of the MINIX operating system
08.SRC2 DS 720K MINIX sources of commands part 1 of 2
09.SRC3 DS 720K MINIX sources of commands part 2 of 2

We will refer to these diskettes in the rest of this manual by their name in the first
column of this table, for example, 01.BOOT.

Before you start working with these diskettes we urge you to copy all of them.
You can use normal TOS procedures, like dragging icon FLOPPY DISK A onto icon
FLOPPY DISK B, to make the copies. Whenever we refer to diskettes as 01.BOOT,
02.ROOT, 03.USR1 etc. we always mean a write-enabled copy of the original
diskettes. Store the original diskettes after copying and keep them write protected

26 MINIX ON THE ATARI ST CHAP. 3

under all circumstances. Do not use your originals as work diskettes.

3.2. NATIONAL KEYBOARDS

The Atari ST comes with different keyboards in different countries. This lack of
standardization is a major nuisance. Atari solved the problem by providing a differ-
ent version of their operating system for each country. We have chosen a different
strategy: a single version that can be adapted to the various keyboards. This section
describes how to set up MINIX for your keyboard.

Unless you have an Atari ST with a United States version of the keyboard, you
must first adapt MINIX to your particular version of the keyboard. Even with a
United States version this procedure can do no harm, so if in doubt proceed. If you
skip this procedure, it is assumed that the keys generate the characters that are
engraved on the key tops of the United States keyboard, that is, the key below the
DEL will generate the ASCII backslash character (\) unshifted, and the ASCII bar (|)
if shifted, irrespective of the character engraved on the key tops of your keyboard.

MINIX cannot handle the national characters themselves, like o-umlaut for Ger-
many. The adaptations described below only allow you to enter the ASCII charac-
ters in the way you are used to with TOS. In this respect MINIX behaves like most
versions of UNIX.

MINIX has its own keyboard translation tables build into the operating system.
A special tool is provided to extract the keyboard tables from a running version of
TOS and to adapt the tables in the binary version of the MINIX kernel accordingly,
without the need to recompile the MINIX kernel. Note that the MINIX keyboard
translation tables have exactly the same format as used by TOS.

Some keyboard versions need so many keys for special non-ASCII characters
that combinations with the Alternate (ALT) key are used to generate some ASCII
characters. For instance, in France the key below the Delete (DEL) generates the
ASCII sharp sign (#), SHIFT-# generates the bar (|), ALT-# generates the at-sign
(@), and ALT-SHIFT-# generates the tilde. The keyboard tables do not take the ALT
key into account, so Atari delivers several national versions of the TOS operating sys-
tem to cope with these problems, as mentioned above. In order to avoid national
versions of MINIX, we have built into the keyboard driver a little table of special
ALT and ALT-SHIFT combinations for the limited number of national keyboard ver-
sions that we knew of: United States, United Kingdom, Germany, France and Spain.
If you happen to have another version you can make a simple modification in the
keyboard driver of the kernel, but that takes effect only after recompiling the kernel.
Refer to the chapter on kernel recompilation.

To adapt the keyboard tables proceed as follows:

SEC. 3.2 NATIONAL KEYBOARDS 27

1. Boot TOS and insert 00.TOS in drive 0.

2. Open a window onto drive 0 by double clicking the FLOPPY DISK A
icon.

3. Run COMMAND.TOS found on diskette 00.TOS by double clicking.
COMMAND.TOS:is a simple line-oriented command interpreter.

4. Run FIXKEYSPRG by typing
fixkeys a:

5. Insert unprotected 01.BOOT
when you are asked to do so, and confirm by hitting the RETURN key.

6. Wait for the program to reply with

Done

You are now ready to boot MINIX.

3.3. BOOTING MINIX-ST

This section presents a boot procedure for MINIX-ST that works on all configura-
tions of the Atari ST. Following sections describe how to adapt the set of diskettes
so that you can use MINIX effectively on your particular combination of memory
and disk drives. For example, if you have more than 512K you can increase the size
of the RAM disk from 160K to 300K, if you have 1M of memory, or to 1M or more
if you have even more memory. If you have a hard disk, all of the diskettes can be
copied onto one or more of its partitions. Finally, some of the options for booting
MINIX will be explained. But first the procedure for booting that works on all con-
figurations is described.

Throughout the discussion below, lines printed in the Helvetica typeface are either
commands you should type on the keyboard, or are lines that the computer will dis-
play for you. In a few of the examples, italics characters or words appear in a com-
mand. These represent values that you are to fill in.

Booting is a three stage procedure. First the operating system itself is loaded into
memory. Then the ROOT file system is copied to a RAM disk allocated in memory.
Finally, the script /etc/rc is executed and a message will be displayed on the screen
asking you to log on.

To boot MINIX-ST, proceed as follows:

28

MINIX ON THE ATARI ST CHAP. 3

. Turn off the ST and then insert diskette 01.BOOT in drive 0. You could

push the RESET button as well, but that may not free memory occupied
by a crash resistant TOS RAM disk you may have running. Moreover, it
fails if you normally boot from the winchester.

. Wait ten seconds, then turn on the ST. It will read the operating system

(about 153K) from diskette in a few seconds. The screen will turn black
and it will show on the top two lines the message:

Booting MINIX 1.5. Copyright 1990 Prentice-Hall, Inc.
Insert ROOT diskette and hit RETURN (or specify bootdev)

Replace 01.BOOT by diskette 02.ROOT and hit RETURN. Alternatives
will be explained later. The system will respond with:

Memory size=992K MINIX=153K RAM disk=160K
Available=679K

for a system with 1M of RAM (numbers might deviate a little). Adding
32K (the size of the video memory) to the first number should give the
amount of memory in your ST.

. A fourth line will be displayed that reads:

RAM disk. To load: 120K Loaded: OK

(The number 120 may vary a little). In rapid succession the number 0
will be increased in steps of 18K, until the whole line is replaced by:

RAM disk loaded. Please remove root diskette.

. When the RAM disk is loaded, the system initialization file, /etc/rc, is

executed. It asks you to remove the root file system and insert the /usr
file system (03.USR1) in drive 0 and type a RETURN. Do so.

. After /usr has been mounted, you will next be requested to enter the

date (and time). Enter a 12-digit number in the form MMDDYYhh-
mmss, followed by a RETURN. For example, 9:35 p.m. on June 01,
1990 was 060190213500.

You will now get the message:
login:
on the screen. Type:
root
and wait for the system to ask for your password. Then type:

Geheim

SEC. 3.3

10.

11.

BOOTING MINIX-ST

being careful to type the first letter in upper case. Lower and upper case
letters are always distinct in MINIX. Alternatively, you could have used
the name “ast” together with the password *“Wachtwoord”. This is
much preferred when you use the system normally, but for now it is
troublesome.

If you have successfully logged in, the shell will display a prompt
(sharp sign for root, dollar sign otherwise) on the screen. Try typing:

Is -l

to see what is in the root directory. Note that you need six keystrokes:
“I”, s, space, “-", “I”, and a RETURN. Then type

Is —I /bin

to see what is in the /bin directory on the root device (RAM disk). After
that, try:

Is —I /usr/bin

to see what is on the drive O diskette. To stop the display from scrolling
out of view, type CTRL-S; to restart it, type CTRL-Q. (Note that
CTRL-S means depress the “Control” key on the keyboard and then hit
the Skey while *“control” is still depressed.)

You can now edit files, compile programs, or do many other things. The
reference manuals given in chapters 8 and 9 of this manual give a brief
description of the programs available. However, before rushing off we
advise you to adapt the system to your hardware configuration first, as
described in the next sections.

When you are finished working, and want to log out, type CTRL-D.
The

login:

message will appear, and you or another user can log in again.

When you want to shut the computer down, make sure all processes
have finished, if need be, by killing them with kill. Then type sync or
just log out. When the disk light goes out, you can turn the computer
power off. Never turn the system off without first running sync or log-
ging out (which does an implied sync). Failure to obey this rule will
generally result in a garbled file system and lost data.

29

30 MINIX ON THE ATARI ST CHAP. 3

3.4. INCREASING THE SIZE OF YOUR RAM DISK

If you have 1M or more of memory, we advise you to increase the size of the
RAM disk from 160K to 300K or more. A larger ramdisk allows you to use the
RAM disk to copy complete or partial file systems from one diskette to another. It
also gives you plenty of space to add a few more utilities to the ROOT file system.
Finally, it allows you to compile much larger programs without running out of disk
space for the intermediate results. On the other hand it leaves you with less memory
to run your MINIX applications. Choosing a RAM disk of 300K leaves you enough
memory to recompile most the sources and perform many other tasks.

It is easiest, to use a 360K diskette to carry this enlarged ROOT file system.
However, it is a little tricky, to use a 360K diskette to carry a larger ROOT file sys-
tem. Say you want to make a 512K RAM disk. You may wonder how a 512K RAM
disk can be initialized by reading it in from a 360K diskette during the boot proce-
dure. The secret is that the 512K RAM disk is not completely full. Part of it is ini-
tially empty so it can be used for scratch files. Only the initialized part (up to 360K)
has to be read in. The only problem with this approach is that if you make new root
file systems, you should be careful that they do not exceed 360K of data. Failing to
do so may damage the file system on your diskette severely.

To install a 512K RAM disk, you must first make a 512K root file system
diskette as described below. When MINIX is booted, it looks at the size of the root
file system and sets its size accordingly. If you have more than 1 MB, you might
even consider making a RAM disk larger than 512K, although only 360K can be ini-
tialized at start-up time. To do this, proceed as follows.

1. Take an empty, formatted diskette and label it 10.R512

2. Boot MINIX-ST as described above and login as root. Then type:

for i in cpdir mkfs; do cp /usr/bin/$i /bin; done
/etc/lumount /dev/dd0

3. Insert 10.R512 in drive 0 and type:

mkfs —t /dev/fd0 512
/etc/mount /dev/fd0 /user
cpdir —msv / Juser

4. Logout by typing CTRL-D.

5. Insert 01.BOOT in drive 0 and type CTRL-ALT-DEL to reboot using
01.BOOT, 10.R512 and 03.USR1.

Do not forget the —t option to mkfs. It suppresses the check if the new file system
fits on the medium. The program cpdir will tell you that it skipped the directory
/user to avoid recursion.

SEC. 34 INCREASING THE SIZE OF YOUR RAM DISK 31

By changing the argument 512 to mkfs you can adapt the size of the RAM disk.
However, if you take a value less than 250 you will run into the problem that mkfs
allocates not enough inodes to store all the entries of the root file system. If you
have 1M of memory and you want to recompile the system a RAM disk of 300K is
recommended. Replace the last two occurrences of /dev/fdO by /dev/ddO if you pre-
fer to use 720K diskettes, or by /dev/hd3, or any other hard disk partition, if you
want to load the RAM disk from the winchester. Read the section on boot options
below if you do.

Note that a copy of the programs cpdir and mkfs will be present in /bin on your
new ROOT diskette.

3.5. ADAPTING PROGRAMSTO USE EXTRA RAM

As distributed, the C compiler is tuned to work on even the smallest Atari ST
configuration. This causes problems if you want to recompile (parts of) MINIX. The
first part of the C compiler proper, /usr/lib/cem, as distributed is configured for a
stack size of 40K, but it needs about 70000 bytes more to compile some of the larger
source files on the distribution diskettes. It is possible to compile small programs on
a 512K machine with the default memory allocation of the compiler.

If you have at least one of the following:

» more than 512K of memory
* two drives, either diskette or hard disk

there are ways to recompile all of MINIX. Note that it is impossible to recompile
some parts of MINIX on an ST with only 512K of memory and a single drive.

You are strongly advised to execute the following procedure now if you have
more than the minimal 512K of memory.

1. Boot MINIX-ST and login as root.

2. Type:

cp /usr/binf/chmem /bin
chmem =35000 /usr/bin/make
/etc/umount /dev/ddO

3. Insert 06.ACK in drive 0 and type:

/etc/mount /dev/ddO /usr
chmem =110000 /usr/lib/cem

A similar procedure can be executed if you encounter any other program that
needs more memory.

32

MINIX ON THE ATARI ST CHAP. 3

3.6. USING SINGLE-SIDED DISKETTES

The distribution contains several 720K diskettes. Most, but not all, Atari ST
machines, have a disk drive that can handle 720K diskettes. Only a few older sys-
tems can only handle 360K diskettes. If you have one of these systems do not
despair. You can split a single 720K diskette into a pair of 360K diskettes on a sys-
tem with a 720K disk drive. Since you do not have such a system you will have to
borrow one from a friend or perhaps your local dealer.

To split 04.USR2 into 13.USR2A and 14.USR2B proceed as follows:

1.
2.

Boot MINIX-ST using 01.BOOT, 10.R512 and 03.USR1; login as root.

Type:

for i in cpdir mkfs rmdir; do cp /usr/bin/$i /bin; done
/etc/umount /dev/ddO

Insert 04.USR2 in drive 0 and type:

/etc/mount /dev/ddO /user
mkdir /tmp/a

Now copy files from /user to /tmp/a. You should add files to /tmp/a
until the command

du —s /tmp/a
reports a value just below 355.
Unmount using:

letc/lumount /dev/ddO

Remove 04.USR2 and insert an empty, single-side formatted disk
labeled 13.USR2A in drive 0 and type:

mkfs /dev/fd0 360
letc/mount /dev/fdO /user
cpdir —msv /tmp/a /user
/etc/umount /dev/fd0

rm —rf /tmp/a

Repeat the same process for the second half of the files on 04.USR2,
using an empty, single-side formatted disk labeled 14.USR2B.

Be careful about the subtle difference between /usr and /user, between /dev/fd0
and /dev/ddO, and between 13.USR2A, 14.USR2B and 04.USR2. The result is two
360K diskettes that contain all of 04.USR2. Similarly, you can divide others.

SEC. 3.6 USING SINGLE-SIDED DISKETTES 33

It may happen that you need more than two 360K disks to contain all files of one
720K disk, because the file system itself imposes some overhead that is now dou-
bled. Use three 360K diskettes in those cases.

After you have divided all other 720K diskettes and you have verified your work,
you should make another copy of your root diskette (02.ROOT or 10.R512) and
modify the file /etc/rc on that new copy, replacing the line

/etc/mount /dev/ddO /usr

by
/etc/mount /dev/fd0 /usr

Now you can use this new 360K version of MINIX just like the original one. How-
ever exercise some care when dealing with examples in this chapter or section 7.2,
since they assume a 720K version.

3.7. USING A HARD DISK

If you have a hard disk and one or more partitions free for MINIX, you can use it
to keep (part of) the distributed diskettes on line. If you have any choice, use a small
(512K to 1M) partition 3 (/dev/hd3) to hold the ROOT file system that is copied to
the RAM disk at boot time. See the section on boot options below. One of the other
partitions, for example 4 (/dev/hd4), can be as big as 32M and can be mounted on
lusr. It is also possible to keep the root file system on diskette and only use a parti-
tion to store the usr file system. In that case you can skip step 6 below. The penalty
for keeping the root file system on diskette is an additional disk swap and some addi-
tional delay when booting the system. There is no difference in behavior after boot-
ing. You could use the whole disk (/dev/hd5) (up to 32 MB) as one single MINIX
file system, but that would make the disk useless for TOS.

This section describes the steps to set up MINIX on such a system.

3.7.1. Step 1. Backup the Hard Disk

If you are already used your hard disk for TOS, before even contemplating
installing MINIX, you should make a complete backup of the contents of your hard
disk onto diskette or another medium. As a bare minimum, installing MINIX will
require erasing one partition of your hard disk, and possibly two. However, to pre-
vent disaster in the event that you make an error during the setup procedure, it is
highly desirable that you backup the entire disk before you even start. Your files are
too valuable to put at risk.

It is worth noting that MINIX has a program, tos, that can read TOS diskettes.
Thus if you make your backup on diskettes, you will be able to read the files into the
MINIX file system after you have completed the hard disk installation.

34 MINIX ON THE ATARI ST CHAP. 3

3.7.2. Step 2: Verify that Your Hard Disk isAtari Compatible

There are a number of different hardware vendors for the Atari ST. Most of their
disks work with MINIX. However, some hard disks will not co-operate with MINIX.
For example it is known that some of the very first Supra disk controllers will not
work with MINIX, due to a bug in the controller. Newer Supra disks (the ones with a
SCSI out port) do not have this problem.

To verify that MINIX is indeed able to correctly access your hard disk, boot
MINIX as described above, but instead of logging in as ast, log in as root, using
Geheim as password (note the upper case G). If you are already logged in as ast, use
CTRL-D to log out, then log in again as root (without rebooting). Logging in as root
makes you the superuser and gives you the sharp sign (#) as prompt instead of the
usual dollar sign. The superuser is the system administrator and has special privi-
leges denied ordinary users. To install MINIX on your hard disk, you will need these
privileges. Once the installation is complete, you should always log in as ast, or cre-
ate your own login name as described later in this manual.

Once you are successfully logged in as root, type:

dd if=/dev/hd5 of=/dev/null count=200
After a short time, you should get the message:

200+0 records in
200+0 records out

If you get an error message or no response, MINIX cannot use your hard disk con-
troller.

3.7.3. Step 3: Partition theHard Disk

Initialize the hard disk (formatting and partitioning) using the tools supplied by
Atari, notably the HDX.PRG utility. If you have already partitioned your disk
before, and you are happy with the partition sizes you can skip this step. Be warned
that partitioning the hard disk will destroy all information on that disk. MINIX is not
equipped to initialize your disk. The MINIX disk driver requires no special settings
of the pi_flag and pi_id fields (see the Atari hard disk manual), mainly because the
Atari hard disk driver code is deficient in properly maintaining the hard disk infor-
mation found in sector 0. This requires you not to mix up which operating system
should operate on which partition, unfortunately. MINIX checks the super block on
mounts and it is unlikely that a TOS partition will be accepted. However, writing to a
TOS partition by accessing /dev/hd? directly, although superuser only, is not pre-
vented. Be careful. Similarly, avoid TOS accesses to MINIX partitions. It is a good
idea to remove the icons for the MINIX partitions from the TOS desktop.

Another problem is that the HDX.PRG seems not to format the last sector on the
disk properly, so never use the last sector of the last partition. This is probably a bug

SEC. 3.7 USING A HARD DISK 35

in HDX.PRG. So, whenever you make a MINIX file system on the last partition,
subtract 1 from the real number of sectors of that partition when calling mkfs.

If you have any choice, allocate a small partition 3 of 512K, and a large partition
4 of at least 10M. This setup is assumed in the rest of this section.

3.7.4. Step 4: Make a MINIX File System on Each MINIX Partition

Now that the disk is physically partitioned, it is time to put a MINIX file system
on each MINIX partition. To do this, determine the number of sectors in each parti-
tion. HDX.PRG will have told you the number of sectors when partitioning. The
number may not be quite what you had expected due to the use of entire cylinders
and rounding effects. Compute the number of 1K blocks in each MINIX partition by
dividing the number of sectors by 2 (one block is two 512-byte sectors).

An alternative is to use the command readall with the option —t on each parti-
tion. For example:

readall —t /dev/rhd4

will tell you the number of 1k blocks on /dev/hd4. It is possible that during the
execution of readall you get a few error messages about unrecoverable disk errors.
These error messages can be ignored safely.

To create a file system of, say, 512 blocks of 1K on partition 3 and 10239 blocks
of 1K on partition 4, log in as root and type:

mkfs /dev/hd3 512
mkfs /dev/hd4 10239

Notice the 10239 (10240 minus 1) due to the bug in HDX.PRG mentioned before.
For other MINIX partitions (or sizes) type the analogous commands. Do not run mkfs
on TOS or other partitions. Be very careful not to make a typing error here, as mak-
ing a new file system destroys all information on the partition specified.

You can verify that the file systems have been made by typing:

df /dev/hd3
df /dev/hd4

which will report on the i-nodes and blocks present on each file system. The total
number of blocks should agree with the number you used in the mkfs command.

You can now mount your new file systems. To mount /dev/hd3 (partition 3) on
luser, type:

/etc/mount /dev/hd3 /user
To change to /dev/hd3, type:
cd /user

This puts you in the root directory of the partition 3 file system.

36 MINIX ON THE ATARI ST CHAP. 3

3.7.5. Step 5: Check for Bad Blocks

With current manufacturing technology, it is nearly impossible for disk vendors
to deliver perfect drives. Almost every drive has some bad blocks on it. If MINIX
were to use a bad block in one of your files, you might lose some valuable data, so it
is important to locate all the bad blocks before putting any files on the disk and make
sure they do not cause trouble.

The scheme used in MINIX is to put all the bad blocks into dummy files, so that
the disk space allocator will think they are in use and leave them alone. This method
is more efficient than wasting entire tracks as spares, as is sometimes done. Suppose
that you have allocated partitions 3 and 4 for MINIX. To locate the bad blocks on
partition 3, first log in as root, go to the root directory, and unmount the partition, if
mounted, by typing:

cd /
/etc/umount /dev/hd3

It is important that the next commands be executed on the root device, since they
will attempt to mount and unmount /dev/hd3, which will fail if your working direc-
tory is there. To locate all the bad blocks, type:

readall —b /dev/rhd3 >bad.3

Depending on the size and speed of your disk, this operation may take a substan-
tial fraction of an hour. Please be patient. It is possible that during the execution of
readall you get a few error messages about unrecoverable disk errors. These error
messages can be ignored safely. When it is finished, a prompt will appear on the
screen. When it does, you can examine the output files using cat, more, or an editor,
for example, by typing:

cat bad.3

The output will be a shell script that calls badblocks with up to seven arguments,
each one the number of a bad block. Bad blocks often cluster together. This is nor-
mal.

To mark the blocks as bad, type:

sh <bad.3

When this command finishes, several files full of bad blocks may have been created
in the root directory of the device containing the bad blocks. In the example above
these files are created in the top level directory of /dev/hd3. After mounting the disk
you can examine them by typing:

Is —la

SEC. 3.7 USING A HARD DISK 37

They will all have names starting with .Bad_, followed by some numbers. Do not
examine or remove the files. You can now remove the shell script by typing:

rm bad.3
If you now type:
df /dev/hd3

you will notice that the number of blocks used has increased by the number of bad
blocks found, and the number of free blocks has decreased by the same amount.

If you have more MINIX partitions, go to the root directory and unmount the cur-
rent partition. Then mount the next partition and repeat the same process. If the
next partition is 4, the sequence is as follows (where the text starting at the # signs
are just comments):

cd/ # go to the root directory
/etc/umount /dev/hd3 # if still mounted

readall —b /dev/rdh4 >bad.4+# find the bad blocks on partition 4
sh <bad.4 # mark the bad blocks on partition 4
rm bad.4 # remove the shell script
/etc/umount /dev/hd4

There is a small chance that a bad block will occur in the i-node list of a new file
system. If this occurs, you must go back to Step 3 and repartition the disk with dif-
ferent sizes, trying until all of the i-node blocks are good.

3.7.6. Step 6: Initialize the Root File System

When MINIX boots, it needs a root file system. By default, this root file system is
read from a 360K diskette and copied into memory as a RAM disk. If you have a
hard disk an easier alternative is to read the root file system from a hard disk parti-
tion, preferably /dev/hd3, and copy it into the RAM disk.

This requires you to make a copy of the root file system onto /dev/hd3. In the
discussion below we will put the root file system on the 512K partition /dev/hd3 on
which we have already made an empty file system above. However, you could
equally well use another partition, but take care that the size of the file system you
make on that partition (the argument to mkfs) is used as the size of your RAM disk.

The procedure below is actually rather similar to the procedure described before
to increase the size of your RAM disk. Proceed as follows:

38 MINIX ON THE ATARI ST CHAP. 3

1. Boot MINIX-ST with 01.BOOT, any ROOT (02.ROOT or 10.R512) and
03.USR1 and login as root. Then type:

for i in cpdir mkfs chmod; do cp /usr/bin/$i /bin; done
/etc/umount /dev/ddO

/etc/mount /dev/hd3 /user

cpdir —msv [/ /user

2. Logout by typing CTRL-D.
You can now test if the new root file system really can be used to boot from. Insert

01.BOQT in drive 0 and type CTRL-ALT-DEL to reboot. You will be confronted
again with the message:

Insert ROOT diskette and hit RETURN (or specify bootdev)

As alternative for the insertion of 02.ROOT or 10.R512 as second step in the boot
procedure you now have three option:

1. Keep the 01.BOOT diskette in drive 0, and hit RETURN. MINIX-ST
will not find a file system on the diskette and will try to load the root file
system from hard disk partion 3, precisely where we have created our
new root file system.

2. Reply with

3,3

to override the default by loading the root file system from hard disk
partition 3.

3. Reply with any other drive specification, like
3,2
if you want to load the root file system from partition 2, for instance.

3.7.7. Step 7: Initialize /usr

The next step is creating all the directories. A shell script called /etc/setup_usr
has been provided to do most of the work. It creates a large number of directories.
Next, it copies files from the distribution diskettes to the /usr tree on the hard disk.
It asks for 03.USR1 to 09.SRC3 in sequence. Just follow the instructions that appear
on the screen until the “Installation completed” message appears. To perform the
installation be sure you are logged in as root. We assume that you have setup

SEC. 3.7 USING A HARD DISK 39

/dev/hd4 as described above, and that /dev/hd4 contains at least 10M. Then, proceed
as follows:

1. Boot MINIX-ST using 01.BOOT, any ROOT (02.ROOT, 10.R512 or
hd3) and 03.USR1 and login as root.

2. Type the commands:

for i in cpdir test echo; do cp /usr/bin/$i /bin; done
/etc/umount /dev/ddO

/etc/mount /dev/hd4 [usr

letc/setup_usr

3. Follow the instructions displayed by the setup_usr script. If your parti-
tion is smaller than 10M, the best thing to do is to install only the bina-
ries onto the hard disk. Type quit when the system asks you to insert
disk 07 (07.SRC1). Installing only the binaries will require 4M.

Except for the boot diskette and the tos diskette, all the distribution diskettes are
normal MINIX file systems that you can mount and inspect if something should go
wrong. When this shell script finishes, the entire MINIX file system will be installed
on the hard disk. Most of the files on the distribution diskettes are compressed files
(with suffix .Z) or compressed archives (with suffix .a.Z). If, for some reason, instal-
lation fails part way through, you may be left with some .a.Z, .a or .Z files on the
disk A file file.a.Z can be decompressed using :

compress —d file.a.Z

If the result is an archive (with suffix .a), you can extract the files from the archive
with the ar command, for example:

ar x file.a

At this point the files file.a.Z and file.a can be removed. The only archive that you
must keep as an archive is libc.a as the C compiler expects it this way. Do not
extract the individual files from it!

From now on you can mount /dev/hd4 at boot time as /usr by making a small
change in /etc/rc found on the ROOT file system (diskette or winchester). Use
mined (see chapter 9 on how to use mined) to change the first two lines that read:

/bin/getlf ""Please insert /usr diskette in drive 0. Then hit RETURN."
/etc/mount /dev/ddO /usr

by a single line that reads:
/etc/mount /dev/hd4 /usr

Inserting diskette 03.USR1 will no longer be necessary at boot time.

40 MINIX ON THE ATARI ST CHAP. 3

3.8. USING A MEGA ST

The Mega ST series is internally quite similar to the Atari 520 ST and 1040 ST
machines. It has more memory, which is automatically supported by MINIX-ST. It
has a blitter chip, but currently MINIX-ST does not support it. Another standard fea-
ture is the battery powered real time clock. To eliminate the need to type the date
each time the system is boot, a small program that reads out the current date and
time from the real time clock, and sets the MINIX time accordingly has been pro-
vided. If you have a Mega ST you are advised to adapt the file /etc/rc so that it will
use that program megartc whenever you boot. Replace the line that reads:

/usr/bin/date —q </dev/tty
by the following two lines:

{/usr/bin/megartc
/usr/bin/date

Note that megartc is found on 03.USR1. This change has the following effect. The
program date queries the terminal for the date and then installs the date. The pro-
gram megartc takes the date from the real time clock instead of asking for it from the
terminal. The second line causes the date to be printed.

As an aside, please note that any other commands inserted in the file /etc/rc will
be executed before the system is booted. However, when inserting commands there,
be sure that they do not require programs or files that are on diskettes that have not
yet been mounted.

3.9. USING A DISK CONTROLLER BASED CLOCK

Since the original Atari ST did not contain a battery powered real time clock,
quite a number of add-on clocks have appeared on the market. MINIX-ST supports
the real time clock from Weide. It also supports the clocks available on various third
party disk controller boards, but only if you recompile your kernel with the
—DCLOCKS option in the kernel Makefile turned on. See chapter 7 for an explana-
tion of rebuilding the kernel. For both types of clocks a small program that reads out
the current date and time from the real time clock, and sets the MINIX time accord-
ingly has been provided. In both cases you are advised to adapt the file /etc/rc so
that it will read the real time clock whenever you boot. If you have a Weide real
time clock replace the line that reads:

/usr/bin/date —q </dev/tty
by the following two lines:

lusr/bin/weidertc
/usr/bin/date

SEC. 3.9 USING A DISK CONTROLLER BASED CLOCK 41

If you have a disk controller with a real time clock and have a modified operating
system (MINIX.IMG) on your 01.BOOT diskette, replace the same line by:

/usr/bin/diskrtc controller
/usr/bin/date

where controller is one of supra, icd, bmsl (for a BMS 100 controller) or bms2 (for
a BMS 200 controller). Note that also these programs are found on 03.USR1.

3.10. BOOT PROCEDURE OPTIONS

The boot sequence we have described so far always starts with a 360K BOOT
diskette in drive 0, followed by a 360K ROOT diskette in drive 0. Between the
BOOT and ROOQOT diskette you have always answered the question:

Insert ROOT diskette and hit RETURN (or specify bootdev)

by hitting RETURN. If the ROOT file system is found on another device you may
specify that device as:

maj or,minor
where major is a decimal number specifying the device type and minor is a decimal
number specifying the drive and/or partition. These major,minor pairs correspond
with the numbers you see in the output of:

Is —I /dev

Some of the useful combinations are:

Maor Minor Device Description

2 0 fd0 360K diskette in drive 0
2 1 fdl 360K diskette in drive 1
2 8 ddo 720K diskette in drive O
2 9 ddl 720K diskette in drive 1
3 1 hdl partition 1 of hard disk O
3 2 hd2 partition 2 of hard disk 0
3 3 hd3 partition 3 of hard disk 0
3 4 hd4 partition 4 of hard disk 0
3 5 hd5 complete hard disk 0

42 MINIX ON THE ATARI ST CHAP. 3

So, if ROQOT is found on a 720K diskette in drive 1 the second line of your
screen will look like:

Insert ROOT diskette and hit RETURN (or specify bootdev) 2,9

If you specify nothing or anything illegal, MINIX will check two default devices
in sequence. First it tries to read the super block of the ROOT file system on 2,0
(360K diskette in drive 0). Only if that fails (read error or illegal super block) it tries
3,3 (partition 3 of hard disk 0). That is why we advised you to use /dev/hd3 as copy
of the RAM disk.

One of the more exotic options of the boot sequence is to read the MINIX operat-
ing system itself from a TOS file, not using the BOOT diskette. On the diskette
00.TOS you find a Tos program MINIX.PRG that takes as first argument the name of
a Tos file, default MINIX.IMG, that contains the operating system. You can create
the file MINIX.IMG yourself by reading enough sectors from the BOOT diskette,
starting with sector 0, but it requires at least one other diskette, hard or RAM disk
besides a:. The procedure below assumes that you have a TOS RAM disk named m:.
Proceed as follows:

1. Start TOS.
2. Inserta copy of 00.TOS, in drive 0.
3. Double click icon FLOPPY DISK A.
4. Double click COMMAND.TOSon A:
rflop a: m:\minix.img 100000
5. Insert protected 01.BOOT if you are asked and hit RETURN.
6. When done, put MINIX.PRG and MINIX.IMG onto a TOS diskette
The third argument to RFLOP is the number of bytes to read. 100000 is more

than sufficient for the operating system as distributed. You can now copy
MINIX.PRG and MINIX.IMG to a TOS partition of the hard disk. Assuming that you
normally boot TOS from the hard disk, you can subsequently switch to MINIX by

double clicking MINIX.PRG. If you want to switch back to TOS you logout by typ-
ing CTRL-D. If you see the prompt login: again, type CTRL-ALT-DEL.

3.11. UNPACKING THE SOURCES

The sources, except the compiler and elle, are on the SRC diskettes. These
diskettes are normal MINIX file systems, which you can mount using the command:

mount /dev/ddO /user

SEC. 3.11 UNPACKING THE SOURCES 43

The files on the distribution diskettes are compressed archives (with suffix .a.Z). If
you want to extract the sources from a file file.a.Z you should first copy this file to
either an empty diskette, or to the RAM disk, if the latter is large enough. Typically
about 4 times the size of the compressed file is required when extracting the sources.
If later on you want to recompile the sources even more space may be required. That
is why you first should copy the compressed source file to an empty diskette. Your
copy of file.a.Z can be decompressed using:

compress —d file.a.Z

After decompressing you can remove your copy of file.a.Z. Now you can extract the
files from the archive with the ar command, for example:

ar x file.a

At this point all files from the archive are extracted. You can now remove file.a
since it is no longer needed.

3.12. THETOS TOOLS

Several tools have been developed for TOS. In the early stages of the MINIX-ST
port TOS was used as the development environment. That forced us to port tools like
mkfs and build, and to develop the programs minix and relmix. Later, when the
native MINIX-ST C compiler became available, we could use MINIX-ST itself for
further development. Rather than simply discarding the TOS tools, we have included
them in the distribution for the benefit of people wishing to do further MINIX-ST
developments using TOS. Below we describe these tools in the same style as the
MINIX commands.

Command: BUILD.PRG - build MINIX.IMG out of its constituent parts
Syntax: build bootblok kernel mm fs init menu minix.img
Flags: (none)

Build takes the six constituent parts and produces the MINIX-ST operating sys-
tem image. That image, if written onto a diskette starting at sector 0, is bootable on
the Atari ST. Alternatively, the program MINIX.PRG can be used once TOS is up
and running.

44 MINIX ON THE ATARI ST CHAP. 3

Command: FIXKEYS.PRG - patch BOOT diskette for TOs keyboard table
Syntax: fixkeys [-d] [-o0] drive

Flags: —d Double-sided diskette
—0 Accept not only a: and b:
Example: fixkeys a: # Modify BOOT diskette in drive a:

Fixkeys patches the keyboard tables of the currently active version of TOS into
the MINIX-ST operating system image as normally found on the BOOT diskettes. It
can only operate on diskettes, not on file images.

Command: KEYTBL.TTP - display the keyboard tables
Syntax: keytbl.ttp [file]
Flags: (none)

Keytbl writes the keyboard tables to the file whose name is gives as a parameter
(or to standard output if no parameter is present). This file can be used when recom-
piling the kernel. Refer to chapter 7 for details on how to recompile the kernel.

Command: MINIX.PRG - boot MINIX-ST from an image on file

Syntax: minix [image]
Flags: (none)
Example: minix minix.img # boot MINIX-ST from minix.img

Minix allows you to boot MINIX-ST if TOS is already up and running. It reads
the operating system image from a TOS file into memory, copies the image to address
0 and jumps to the address found at location 4. There is no way back to TOs, except
by rebooting the machine.

Command: MKFS.PRG — make a MINIX-ST file system
Syntax: mkfs [-dol] drive prototype
Flags: —d Double-sided diskette
—0 Overwrite: accept not only a: and b:
-l Make a listing on standard output
Examples: mkfs a: proto # Make a file system on drive a:
mkfs -d b: 360 # Make empty 360 block file system
Mkfs builds a file system and copies specified files to it. See chapter 8 for a
description of the proto file syntax. The files used to initialize the new file system
should conform to the TOS syntax, including backslashes and drive specifications.

SEC. 3.12 THE TOS TOOLS 45

Command: RELMIX.PRG - change loadfile from .68K to .MIX format
Syntax: relmix [+amount] [-amount] [=amount] prog.68k prog.mix
Flags: + Increase memory allocation

— Decrease memory allocation

= Set memory allocation
Example: relmix =2000 x.68k x.mix # Make MINIX-ST style loadfile

The Alcyon 4.14 C compiler, part of the Atari ST developers kit, produces a

loadfile in .68K format. A simple transformation of the header, removal of the sym-
bol table, and a transformation of the relocation information as performed by the
RELMOD.PRG program (also part of the developers kit) does the trick.

Command: RFLOP.PRG - read bytes from diskette
Syntax: rflop [-d][-o] drive file bytes
Flags: —d Double-sided diskette
—0 Accept not only a: and b:
Example: rflop a: minix.img 100000 # Read minix.img from BOOT diskette
An arbitrary number of bytes is read from the diskette and written to a TOS file.
Reading always starts at sector 0.

Command: WFLOP.PRG - write bytes to diskette
Syntax: wflop [-d] [-o] drive file

Flags: —d Double-sided diskette
—0 Accept not only a: and b:
Examples: wflop a: minix.img # Make BOOT diskette

A TOs file is written to a diskette, starting at sector 0. This overwrites the infor-
mation in sector 0 used by TOS to determine the type of the diskette.

3.13. TROUBLESHOOTING

As a user of MINIX-ST you may be confronted with some of the error messages
the system can produce. The following subsections give guidelines on you how to
react. It also explains how you can use the built-in debugging aids.

If you have problems booting the system, try the following steps: power down
the machine, wait 10 seconds, insert the BOOT diskette in drive 0, and power up the
machine. If you have a hard disk and normally boot from the hard disk directly, you
may either force booting from the diskette as described in the Atari hard disk man-
ual, or start MINIX-ST using the supplied TOS program MINIX.PRG, as described in
section 3.9 of this manual.

46 MINIX ON THE ATARI ST CHAP. 3

Either way, the screen should turn black and you will see two lines printed on the
top of the screen, asking you to insert the ROOT diskette. If these lines do not
appear, the BOOT diskette is probably damaged.

Hitting RETURN at this point should give one more line. If not, you might sus-
pect the keyboard or the BOOT diskette. Normally, when the root file system is
being read in, regular progress reports appear on the screen. If not, the diskette drive
may not be working correctly with the MINIX-ST diskette driver (e.g., because your
diskette controller does not generate interrupts as it should). This should not be a
problem with all known Atari ST production models, but we have heard about some
problems with very old development machines. If disk error messages appear on the
screen, your drive may need slower step rates than usual. Official Atari diskette
drives should work correctly.

If the system behaves funny or even crashes while loading the root file system,
the ROOT diskette is suspect. It might be corrupted or too big for this machine. If
so, try it with (a copy of) your 02.ROOT diskette.

If you have gone through these critical initial steps you should not have any
problems getting MINIX-ST booted, since the essential resources, the diskette, the
keyboard and the screen are probably all right.

3.13.1. Error Messages

Many of the error messages are also found in MINIX-PC. Here we list the
MINIX-ST specific ones. In all cases % followed by a letter gives the printf format
of the number.

Three messages are printed by the kernel if commands running on top of the
operating system itself encounter problems, such as unsolicited hardware traps and
stack overflow. These three are:

* 5ig=%d to pid=%d at pc=%X
Generated if bus errors, segmentation faults, illegal instructions or funny traps
are encountered,

» Stack low (pid=%od,pc=%X,sp=%X,end=%X)
If a stack overflow has happened or is about to happen, and

» Unexpected trap. Vector = %d
This may be due to accidentally including
a non-MINIX library routine that is trying to make a system call.
If any of the trap instructions is executed that is not used by MINIX-ST. In both
cases, the system will continue, but the program is likely to be aborted with a
core dump generated on the file core.

SEC. 3.13 TROUBLESHOOTING 47

A number of messages announce unexpected hardware events, sometimes only a
warning, sometimes more serious, but not immediately fatal. In this category fall:

* fd%d: timeout
No diskette in drive (you have 15 seconds to insert one)

* fd%d: read: dma status = 0x%ox
DMA error on diskette read request

» fd%d: read sector %d: fdc status = 0x%ox
Diskette controller error on read request

» fd%d: write protected
Writing to write-protected diskette

« fd%d: write sector %d: fdc status = 0x%x
Diskette controller error on write request

» fd%d: recalibrate failed. status = 0x%ox
Cannot find track 0

* hd: read: drive=%d sector=%D status=0x%x
Hard disk error on read request

* hd: write: drive=%d sector=%D status=0x%ox
Hard disk error on write request

* DMA interrupt discarded
Unsolicited interrupt from device on DMA bus

* midi interrupt: status=%x, data=%x
Unsolicited interrupt from MIDI interface

* Fake interrupt handler for %s. trap = %02x
Unsolicited interrupt from:

timint,00: timer A of MFP chip
timint,01: timer B of MFP chip
timint,03: timer D of MFP chip
siaint,00: MFP RS232: char received
siaint,01: MFP RS232: receive error
siaint,02: MFP RS232: char transmitted
siaint,03: MFP RS232: transmit error
iob,01: MFP RS232 Data Carrier Detect

48 MINIX ON THE ATARI ST CHAP. 3

iob,02: MFP RS232 Clear To Send
iob,03: unused

i0b,06: MFP RS232 Ring Indicator
iob,07: Monochrome Monitor Detect

* Printer is not available
Ready bit off: not connected or off line

* printer: still busy
Interrupt received, but not ready

More serious conditions cause a system panic. A message is printed and an infinite
loop is entered. Only a reset helps: push the RESET button (sometimes CTRL-ALT-
DEL works as well). The most important MINIX-ST specific kernel panics are:

* dma:ASSERT (%os) failed
Consistency checking in stdma.c

o fd: ASSERT (%bs) failed
Consistency checking in stfloppy.c

 Nonexisting interrupt. Vector = %d
A trap via one of the vectors that is unassigned

» Unexpected interrupt. Vector = %d
A trap via one of the autovectors not used by the ST

* trap via vector %d
A synchronous trap in kernel mode

* no shadow?
Two processes share an ORIGINAL, but neither points to a SHADOW

* rmshadow: cannot handle physio shadows
SHADOW with p_physio set must be copied to ORIGINAL.

* only shadow(s)
All that share ORIGINAL have SHADOW set

e tty_init: unknown terminal %d
For all NR_TTYS an initialization routine must be called

The important file system panics are:

SEC. 3.13 TROUBLESHOOTING 49

* Invalid root file system

* RAM disk is too big. # blocks = %d

* Root file system corrupted. Possibly wrong diskette.
* init: can’t load root bit maps

* Disk error loading BOOT disk %d

For all these errors retry booting with (a copy of) 02.ROQOT.
3.13.2. Debugging Aids

Some of the internal tables can be inspected by special key combinations. The
keyboard driver recognizes the following key combinations and calls debugging rou-
tines in the kernel:

CTRL-ALT-F1 dump of the process table
CTRL-ALT-F2 dump of the memory map
CTRL-ALT-F3 dump of the status of the current process

The process table shows the current and lowest stack pointer detected, the CPU
time spend in user mode and system mode, and the memory slot occupied for each
process, including kernel tasks, as well as other information.

The memory map shows (for user processes only) the location and length of the
text, data and stack segments, and the shadowing fields p_shadow, p_nflips and
p_physio.

The status of the current process shows the register values most recently saved, a
memory dump around the location of the program counter, and a memory dump
around the location of the stack pointer. The memory dumps can be used to give a
stack trace and, by manual disassembly, the instructions executed most recently.

The CTRL-ALT-F6 key combination toggles an option to dump the same tables
whenever the message

sig=%d to pid=%d at pc=%X

is printed and whenever the system panics. By default the “automatic table dump”
option is OFF.

The CTRL-ALT-F5 key combination toggles an option to send all kernel gener-
ated output not only to the screen but also to the line printer. By default the *““kernel
output to printer” option is OFF. If the printer is offline, the printing is temporarily
suppressed. If the “kernel output to printer”” option is ON, and the printer switches
from online to offline, it may take a few seconds to detect this, since initially it looks
similar to a printer buffer full condition. Be patient.

50 MINIX ON THE ATARI ST CHAP. 3

The CTRL-ALT-F4 key combination toggles an option to send all kernel gener-
ated output to the screen. By default the “kernel output to screen” option is ON.

A good procedure, if you encounter a problem and you want to spot it, is to iso-
late the problem such that it is reproducible. Then, insert paper in the printer and
toggle CTRL-ALT-F5 and CTRL-ALT-F6 to capture the debugging information on
paper while you reproduce the error situation.

If the problem is in a command the core file contains a memory dump at the time
of the crash. These post mortem dumps can be analyzed using the mdb debugger.
Refer to chapter 9 for a description of mdb.

If problems are encountered in the MINIX-ST driver, you have a chance that that
driver has debugging statements coded in. By changing either the #DEBUG or
#TRACE definitions, you can effectuate these statements, but only after recompila-
tion. Refer to chapter 7 on how to recompile MINIX

